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Methads are presented for accelerating a numerical procedure for
self-consistent solution of a kinetic equation and Poisson's equation in
plasma simulation, The kinetic equation is salved using a propagatar
technigque, although other approaches would aiso benefit from the
accelerated procedure. The kinetic equation is solved in a phase space
of at least one spatial vanable and two velocity coordinates, (Z, V;,
Ve). Ve is in the direction perpendicular to Z. In these variables it is
possible to advance the reduced distribution function g(Z, ;) in time
very efficiently using several “short” time steps within a desired “long”
step. We can then use the results of the "short” steps to find the quan-
tities needed to ¢alculate the change in the futl distribution £{Z, V5, V)
during a single "long’ time step. In the case studied here, the electric
field and/at transition matrix in the (Z, V) space are calculated from
the reduced distribution, at each of C time steps of roughly one tenth
of the plasma period. The full step is then for /10 plasma periods, thus
removing the limit on the integration imposed by the plasma period.
Applications to an f discharge are presented.  © 1993 Academic Prass, lnc.

1L INTRODUCTION

For some time, particle simulations, such as Monte Carlo
and particle-in-cell Monte Carlo, have been an important
tool for describing complex plasmas at the kinetic level
[1-4]. Alternative approaches which offer some advantages
over particle simulation have now become available for
solution of kinetic equations, including a scheme based
on propagators (Green's functions) [5-7]. The method
employed here deals with densities of particles on a grid.
Particle equations of motion are used to find the way the
density is redistributed, but individual, discrete particles are
not used. Methods in which discrete particles are followed
on a grid, including those in Refs. [8-10], are distinct from
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this. This paper describes schemes which accelerate the
solution of the kinetic equation.

The introduction of implicit methods into particle simula-
tion has been claimed to be the major innovation in that
technique in recent years [1]. The meaning of implicit
in this context needs clarification. Approximate and/or
iterative procedures are used for the construction of quan-
tities such as the electric field at the end of the time step.
These are then used in the calculation of the particle motion
during the step. Some of the techniques used here are
“implicit” in this sense, but not truly implicit.

The basic scheme will be described briefly next. In
Section II the underlying propagator (Green’s function)
scheme 1s reviewed, with some details of how it is made to
conserve certain quantities and how it is optimized for
accuracy and efficiency. In addition, a thorough description
of the accelerated method for this scheme is given. In
Section III the results of applying the method to simulation
of an rf discharge in helium are discussed.

In this work we are principally concerned with the time
evolution of the distribution function f = f(Z, V,, V) for
clectrons, which is calculated self-consistently with the elec-
trostatic potential @. The ion distribution is also calculated,
but since it varics much more slowly it can easily be
followed using much longer time steps, so it presents few
problems. Z is a spatial coordinate perpendicular to the
plane parallel electrodes, V' is the corresponding velocity,
and ¥V is the component of velocity perpendicular to Z. In
much of what follows, we exploit the fact that the spatial
coordinates perpendicular to Z are ignorable.

The major expenditure of effort in the numerical calcula-
tion is associated with updating the density in each of
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the large number of cells in the phase-space mesh. The
two-dimensional (2D) distribution function g= g(Z, V)
can be found from f by integrating over ¥, namely

SZ V=2 [fZ Vo V) VedVe (1)

Of course, the integral turns to a sum on the numerical
mesh.

In the absence of collisions, f and g obey the same
equation of motion and may be found using the same
propagator; g is found more guickly, however, because
there is no need to update the many V, cells involved in
specifying £, If we compute g from f, and then separately we
advance each of them in time, using the same time step At
and calculating the potential & self-consistently at each
step; then the results agree to numerical accuracy. That is,
if g is calculated directly and & found from it, the results are
identical to those found from £, at each step.

One set of accelerated schemes we have considered
exploit the fact that the potential & is the same, whichever
way it is found, to overcome the limit placed on the time
step 4t by the plasma period 7'p. In an “explicit” scheme the
time step is limited to the smaller of T,/10 or T/5, where
T is the mean time between collisions for particles at a speed
where they collide most frequently. Here we are interested in
plasmas for which T'p < T

The two main approaches we explore here are:
{1) integrating g over a large number of short steps, then
constructing f from the behavior of g, and (ii) the use of
“damping” to increase the short time step Ar The
latter is straightforward. After each time step, an instaneous
electric field E(Z, t+ 4¢) is found from the electron and
ion distributions. We then compute a damped field
E4Z, t+ At} from

ENZ, 1+ Aty =aEYZ, t)+ (1 —2) E(Z, t + A1),

where 0 < ¢ < 1. With =0, the damped electric ficid is just
the instancous electric field, while in the other limit (o = 1),
the electric field is independent of time. We find that using
o~ 0.6 — 0.8 is effective in reducing numerical noise.

We now return to the use of g to find £. At time ¢, g is com-
puted from f; g is then advanced in time, using C steps of
duration 4¢ such that At = T5/10. Two procedures will be
described to update f. In the simplest, at each of these steps,
@(Z) is calculated and its values stored. After all Csteps, the
average potential {@{Z)> is used in the basic calculation
to advance f, using a time step of duration Af,,,=
C At~ CTp/10. (In order to ensure energy conservation,
particles are reallocated to velocity bins in accordance with
the average potential &, obtained from the average electric
fields found in the short time steps (see Section II below}.)
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The advantage of this procedure is twofold. It allows fto be
updated using long time steps, whereas normally the step is
limited to be about T,/10, thus reducing computation time.
The second advantage is that the long step results in the
decrease of “numerical diffusion.”

The second approach to using g to find f requires that we
store not $(Z) but rather the transition probabilities for
particles going from initial cell (Z”, V%) to a final cell
(Z, V). The overall probahility during C “short” steps of
going from each initial cell to each final cell is constructed
by taking the transition matrix created during step i—1
which gives the transition probabilities after i — 1 steps. We
then update it during step i at the same time as calculating
the ith update of g. This is repeated until short step i = C is
reached. This is costly in terms of memory, but more
accurate than the first scheme. It will be described in more
detail below.

The calculation of g at a single step is very fast in com-
parison with that of . The actual speed achieved depends on
the number of V. values and the efficiency of the matrix
manipulation. Between long steps, collisions are included.

The methodology outlined can be used to set up a
Newton's method formulation of a steady-state problem,
If it converges, it yields a truly implicit solution for the
steady-state distribution and electric field. The next section
describes the procedure in more detail, followed by results
in Section ITL

1. THE ACCELERATED BOLTZMANN SOLVER

In this section, we will first review the Convected Scheme
for solution of the kinetic equation and then describe the
justification for and implementation of the accelerated
scheme. In the section that follows, we will present results of
its application to an rf discharge in helium.

Propagator Solution of the Boltzmann Equation

We now review the convected scheme [5-77 for solution
for the Boltzmann equation. In the normal convected
scheme, the electron (as well as ion and neutral) distribution
function f(Z, ¥V, V) is advanced in time according to a
propagator p(Z, V,, V,, Z", V, V', 4t) such that

f(Z, Vg, Va, t+ A1)
={nz" vy, vi

xp(Z, Vo, Ve, Z", Vi, Vi, A)dZ" dV". (2)
That is, the propagator {or Green’s function) p(Z, V', V,
Z", V., Vi, At} determines the fraction of particles moving

from cell (Z7, V7, Vi) tocell (Z, V,, V,}in the time step



ACCELERATED BOLTZMANN SQOLVER

Ar. In the case studied here, it is assumed that the distance
between the two electrodes, Z_,,, 1s much less than the
lateral dimensions of the electrodes, so that fringing of the
electric field can be ignored and so the electric field E is only
a function of position Z.

The propagator can be broken up into two distinct parts,
corresponding to a ballistic motion followed by collisions.
The only limits on the time step are physical limits. The time
step, 41, must satisfy the relation

At < T‘CE [Nvalot(v)] 713

where N is the density of scatterers, v is the relative speed,
and a,,(v) is the total cross section. This criterion ensures
that the probability of a scattering event taking place in A¢
is very much less than one. There is also a constraint on 4t
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FIG. 1. Ballistic movement of phase space cells, in the independent
variables (£, V, Vp). Left and right faces of initial cell are moved
independently. Note that the ¥ -axis has been omitted for clarity.
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where m1, is the mass of an electron, ¥, is the density of
electrons, and e is the magnitude of the electron charge
(in gaussian units). This ensures that the electric field E(Z)
does not change appreciably during the ballistic move. In
the case studied here, T, < T¢.

Figure 1 is a schematic of the movement of the phase
space cells during the time step. The faces of the cells are
moved independently according to the initial velocity and
the local electric field. The number of particles going to each
final spatial cell is determined by the fractional overlap of the
“moved” cell with a particular final spatial cell, compared to
the total spatial width of the “moved” cell. Once this is
computed, the final V., distribution is computed not
via the equations of motion, but by energy conservation.
Specifically, we know that the initial total energy is

Gioir = 3V i + V Zinit) — €9 Zigi) (3)
and the final energy in a particuiar final cell at Zg, is
'gﬁna] = %me( V%’ﬁnal + VZZﬂnal) - eq)(zﬁnﬂl]’ (4)

where Vo = Vpana- EqQuating these expressions, we solve
for ¥ gna. In general, V4 ., does not correspond exactly to
a velocity cell on the mesh. The two neighboring ¥, cells are
then found, and the fraction of particles that go to each is
chosen so as to ensure that the average total energy is
conserved,

Figure 2 is a schematic of the collision operator [6].

Unscattered particle
(nitial celd S

FIG. 2. Schematic of the electron collision operator. Electrons leaving
a scattering event are distributed isotropically; amisotropic elastic
scattering is described through the elastic momentum-transfer cross
section. Electrons involved in inelastic collisions lose a fixed amount of
energy according to the type of collision. g is the cosine of the angle that
the velocity makes with the Z-axis, ie., u=V,/(Vi+ Vi)? and V=
(¥%+ VL)'~ Individual mesh cells have been omitted for clarity.
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Collisions take place after the long time step, not during the
accelerated part of the calculation. This is justified since the
probability of colliding during any one small time step is
very much less than one. It only is appreciable after many
small time steps, namely a long time step.

Accelerated Propagator Scheme

The accelerated version of the scheme is now considered
in detail. We begin by noting that the E-field in this scheme
1s damped, as described in the Introduction. Thus at each
“short” step, E“(Z, t) is constructed and used in the next
short ballistic step.

The starting point of the justification of the accelerated
scheme is the Lagrangian of the system. Since we have an
approximately infinite parallel plate discharge, the electric
field, E is only a function of Z, the distance along the
discharge axis. Therefore the instantaneous e¢lectrostatic
potental @ is aiso only a function of Z. Specifically, the
Lagrangian for an electron is given by (ignoring collisions}

L=im (V3+V3)+ed(Z). (5)

The conjugate momentum p, = m, ¥ is constant during the
ballistic motion. This greatly simplifies matters, since once
the coordinates (Z, V;) of a particular moved cell with
initial location (Z”, V%) is found, all ¥, cells from the same
initial location move to the same (Z, V) coordinates. In
other words, instead of finding the moved location of a cell
labeled by (Z,, Vs Vp) Vi, j, k € the mesh, we only have to
compute the moved location for a given value of (Z;, V,}
once for, say, ¥, =0, since this final location is the same for
all Vpat (Z;, V). The value of ¥ of any cell is not changed
during the ballistic motion, but it can be changed during a
scattering event.

The second observation we need to make to justify the
acceleration, is that up to (a fraction of)} the collision time,
T, the electron motion (and the corresponding electric
field) is the same if we propagate the full 3D distribution
f(Z, V5, V) or if we propagate the 2D distribution
g{Z, V). This says that we can update the 2D distribution,
g, and still have the same density, and by Poisson’s equa-
tion, the same electric field, as we would obtain from the 3D
distribution function. A complication arises, however, in
that to describe collisions we need the full 3D distribution, f.

One can easily see that updating the 2D distribution is
faster than integrating the 3D distribution, since the number
of cells that need to be moved is reduced from
MMM, +1)72 to M M, M, is the number of spatial
bins, M, is the total number of ¥, bins (positive, negative,
and zero), and (M, + 1)/2 is the number of ¥, cells. (Note
that the number of ¥, cells can be independent of the num-
ber of ¥ cells.) The savings are somewhat more modest
than this, since the extra factor of (M, + 1)/2 corresponds to
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moving the ¥, cells, which, according to the argument
involving the Lagrangian, given above, are less time
consuming to move. We can see, however, that the larger
the mesh, the more saving in computation time that the
acceleration will give,

Choice of Independent Variables

Before we describe the implementation of the accelera-
tion, some remarks on the choice of variables (Z, V,, Vp)
should be made. In previous CS codes, generally the
variables used were (Z, V, ), where ¥ was the speed, and
i was the cosine of the polar angle that ¥ made with the Z-
axis. Such a set made the collision operator straightforward
(equal numbers of particles were placed in equal intervals of
u for isotropic scattering), but introduced complexities in
the ballistic motion. Specifically, none of these variables are
ignorable in the ballistic motion. So, to update the distribu-
tion function, one had to move each cell face through a
unique trajectory, not the same as that of any other cell
faces. Furthermore, to implement an accelerated method of
this kind, one would have to transform the 3D distribution
to the 2D distribution, which invelves extra overhead, The
main advantage to using those variables is that the collision
operation is straightforward. (It is also the case that in a
certain sense, very fine “energy resolution” at low ¥V is
obtained with these variables on a constant sized velocity
mesh (A4V = const). For each ¥, there are a number of u's,
so the projection of ¥ onto the Z-axis gives a range of values
spaced more finely than just AV. However, the true
resolution is still only AV.)

In the variables (Z, V., V), the collision operator is
more complex and fine resolution at low ¥, is not ensured
but must be provided by the choice of mesh spacing. Fine
resolution at low ¥ is important for accurate description of
electron movement. While the collision operator is more
complex in these variables, this can be overcome, as we shall
now describe.

For each type of scattering event, one can compute the
final energy of an electron, given its initial energy and the
amount of energy lost. The details of a collision are
independent of spatial location. Thus a collision operator in
the form of a matrix which redistributes particle densities in
velocity space is constructed once and only once at the

TABLE1

Parameters of the Discharge

Quantity Value Units
Neutral density 9.65 10 em 3
Neutral temperature 300 K
Peak driving voltage 300 Volts
Driving frequency 13.56 MHz
Discharge length 6.7 cm
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beginning of the simulation for each type of coilision. Care
must be taken while constructing such a matrix, since
energy and number conservation must be adhered to. This
matrix is discussed below.

Currently, we assume isotropic scattering for ali
scattering processes (anisotropic elastic scattering is
described by the isotropic elastic momentum transfer cross
section), but anisotropic scattering could be tmplemented.
Isotropic scattering is easily implemented by constructing
two matrices. The first matrix, for a given initial energy and
type of collision, gives the final energy and redistributes
particles on an intermediate {one-dimensional ) energy mesh
so that their average energy is correct.

The second matrix, given the final energy and assuming
isotropic scattering, indicates how to place ¢lectrons back
on the 3D mesh so that the final energy is correct and
isotropy is ensured. Specifically, the second matrix is
indexed by the final energy values on the intermediate mesh,
For each energy, a maximum F,__is found. V' runs from
~V; .to +V, . Thefraction that goes to cach valid V',
cell is just the width of the V' cell divided by 2V,__, in
isotropic scattering. That is, equal numbers are placed in
equal intervals of V¥, /¥, where V is the total speed. Then, in
general, there are two adjacent Vs that go with each of the
V4 to conserve the average (final) energy. A simpler and
faster scheme which gives less resolution in pitch-angle, but
less numerical diffusion in energy, has been described else-
where [11]. For elastic scattering of electrons (neglecting
energy loss, which is included later), this involves using only
those final cells whose energy is identical to that of the initial
cell, so angular resolution is limited, but numerical diffusion
in energy is eliminated from this process. (During ionization,
it is important for charge balance to add new ions at the
same time as adding new elecirons, even though the ions are
not otherwise updated as often as elecirons.)

Good resolation at low ¥V, is obtained by using a non-
constant velocity mesh. Currently, we have a velocity mesh
such that A{(imV'3) oc (3mV2)*. That is, the width of a
velocity cell is such that the change of energy across one cell
is proportional to the energy of that cell raised to some
power x. If x = § then this would be a constant velocity mesh
(4V,=const). We use x=1 here, giving a mesh with
energy spacing on a logarithmic scale (4 ln(imV32)=
const). At the lowest energies, however, 4}V, = const is
used. In the example treated here, the low energy spacing is
4V, =90km/s (corresponding to roughly 0.025eV) and
Aln (3mV2)=0.287 at higher energies, the latter spacing
providing resolution A{imV2)= +14% and AV = +7%.

Implementation of the Accelerated Propagator Scheme

Now we wil describe in some detail the implementation of
the acceleration. There are many differences in detail in the
possible algorithms. Two methods based almost directly on
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the above argument are described here. One stores $(Z)
from the short steps to update f The second creates
the overall (27, V%) — (Z, V) transition matrix while
updating g.

The first method is straightforward. At the beginning of
the ballistic move, we compute g(Z, V) from the current
flZ, V5, Vp). Then we begin to take short time steps of
At~ 5T . We propagate the 2D distribution, g, for some
number of steps C, such that C At < T-/3, keeping track of
the intermediate electric fields, E; computed by means of
Poisson’s equation (V?@ = —d4zp™') from the 2D electron
distribution, g, and the ion distribution. After C short time
steps, a time average electric field is calcuiated at each spa-
tial location and used to update the fuil 3D distribution, £,
in a time step of AT = C 4r. While this is straightforward to
implement, it is found that typically C may only have values
< 5 or so. If Cis more than five, then numerical instabilities
occur. Namely, the ionization rate tends to grow without
bound and the electron density grows. It is also observed
that if C 4z is an integer divisor of Tp, then resonance
occurs and again, unphysical instabilities occur.

We now outline the matrix-update procedure. Here,
instead of storing the intermediate values of ¢(Z) from
the short steps, we construct a matrix which gives the
probability of each initial cell going to a set of final cells.
Specifically, the matrix is indexed by the ordered pairs
(Z, V). If we call the matrix 4, then the element A, ; gives
the fraction of particies in initial celi j (which corresponds
to (Z", V%)) going to the final cell { (corresponding to
(Z, V). For each short time step, such a matrix is created
as g is updated. Then by doing the C matrix multiplications,
we find the final transition matrix which describes how
the initial 3D cell’s densities chanpge throughout the
“long” step. By noting that all the different ¥, cells with a
certain (Z”, V%) all transform the same way, we can then
update the full 3D distribution from just a matrix—vector
multiplication.

Storing all the intermediate transition matrices is
prohibitive due¢ the large memory requirements. Instead,
during the update of g, an outer-product is done between a
column vector of transition matrix elements in the current
21> move (which consists of the group of final cells for a par-
ticular initial cell of the 2D move) and a row of the previous
transition matrix (the row corresponding to the initial cell
of the overall move, whereas the column corresponds to the
final ceils). This is added to the running sum of the new
transition matrix. Only two matrices are required regardless
of the number of short steps.

The matrix solution, as described above, is exact. With
efficient matrix-handling capabilities, this offers an increase
in speed. Alternatively, approximate matrix solutions,
which refer to a fraction of the phase-space mesh, can be
used. For example, we can simplify the updating of the V.
distribution (V) at a given V¥, by assuming that 4(¥ ;) is
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FIG. 3. Time averaged electron, ¥,, and ion, N,, densities; solid lines
indicate accelerated results, dashed lines indicate “basic” resubts.

the same at all | V| values greater than V', _, for some
suitable value of ¥, . The matrix need not be evaluated for
[Vl > Vg, in this case. This approach was used in the
reults shown in Figs. 3-7. In addition, very small terms in
the transition matrix were dropped. Depending on the
application, the transition matrix elements from some cells
need not be calculated but may be interpolated from those
of adjacent cells, further reducing the computational effort,
In our calculations, with no special capability to perform
matrix manipulations, but using a “linked-list” representa-
tion to store the transition matrix, “breakeven™ in terms of
the speed came when the matrix was evaluated for between
5 and % of the phase-space cells. When § of the cells were
used, a 50% increase in speed resulted. The maximum
possible in our case is a fivefold increase.

Various techniques are used to speed the calculation of
the evolution of the 2D distribution. Since there are no addi-
tional operations between successive moves using g (other
than calculation of an intermediate electric field), we store
the 2D distribution in a three-dimensional matrix with
indices given by (Z;, Vz, Current), where Current is an
index with value 1 or 2. By toggling the index, one can avoid
reading the new values of the distribution into the matrix
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after each move, to replace the old, as one would have to do
if Current were not there.

A second time-saving technique involves the calculation
of the motion of the cell faces. We move each of the faces
independently according to the local electric field. Now, the
left face of a given cell has the same motion as the right face
of the cell with the same initial ¥, in the spatial location just
left of the original cell. We therefore store the final spatial
locations of the right faces of the cells with coordinates
(Z,, V), to be used for the left faces of cells with coor-
dinates (Z, ., ¥ ). Since finding the final location of the
cell faces can take appreciable time, we achieve a factor of
two in computation time, compared to moving all the faces
separately.

The accelerated time step is typically three or four times
longer in the first method and up to six times longer in the
maltrix method than the basic step in the case we present
below, This reflects the sizes of T and Tp; if T Tp, a
much greater acceleration results.

As an alternative to the above accelerated schemes, a
Newton’s method would be employed in steady state, with
constraints that the change in density in every phase-space
cell and the change in electric field at each spatial cell are
zero. The independent variables are the density in all phase-
space cells and the electric field at all spatial cells. Then the
above constraints may be expressed as H(u)=0. The
Jacobian matrix .# = [ ¢H/ou | can readily be set up, during
the calculations which are normally done in order to take a
time step. At each iteration of the Newton’s method, .# must
be re-evaluated, since some of the smaller derivatives are
capable of changing significantly. Sparse matrix handling
methods must be used to solve the resulting system.

Finite Mesh Effects in an Energy Conserving Scheme

We now consider the numerical accuracy of a Boltzmann
solution on a mesh, and in particular of the CS on our mesh.

In any calculation which employs a mesh, the size of the
mesh imposes a limit on the accuracy of the results. In this
section we consider the interaction of the mesh spacing AZ
in the spatial coordinate Z, and the spacing 4V, in V', with
the requirement of energy conservation.

As expiained above, the distance moved is édz=
V, At + 3a Ar*, where a is the acceleration, —eEjm,, for
clectrons. For simplicity, the electric field is assumed to be
constant along the trajectory of the electron. However,
energy conservation is used to determine the final value of
¥, that is, the V' cells in which particles are placed and the
fraction of particles placed in each. In particular, particles
which stay in the same spatial cell at ¢ + 47 as they were at
time s, will have the same V, since @(Z) is not changed
until the densities are updated and V. is not changed in
collisionless motion. This is not unique to our approach,
of course. Any mesh-based technique which has energy
conservation will have this feature,
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If ¥, does not change until particles leave the initial cell,
the question arises as to how big an error this causes. The
time to cross the cell is roughly ... =dZ/V, and the
change in ¥, which is not accounted for is AV, =at .., =
(—efm,) EAZ/V,. The fractional error in ¥V is thus
AV [V ,=—eE AZim. V7%, so provided eEAZ <mV3,
twice the kinetic energy due to the “Z” motion, the error is
small. This criterion is easily satisfied in the bulk region
and marginally satisfied at the electrode surfaces, with
A4Z=10"m in the cases presented here. If the criterion
is not met, the time to cross the cell is overestimated,
artificially lowering the mobility.

When particles enter another spatial cell, energy conser-
vation gives the correct V. Provided 4V, the spacing of
cells in V', is small compared to I itself, V', is adequately
resolved. At each time step there is still numerical diffusion
in ¥V, as well as Z due to the finite size of AZ and 4V ,,
however, Further, there are always cells of the mesh with
energy well below the average. For these low energy celis,
atoee/ V2 18 large. As the time step increases, fewer particles
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FIG. 4. Instantaneous electrostalic potentials and electric fields at
zero applied voltage.
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will remain in the inttial cell and, consequently, return to
their tnitial velocity. Bigger time steps decrease this effect
and also decrease numerical diffusion.

ITI. RESULTS FOR AN RF-DISCHARGE IN HELIUM

We now present results for a He ri-discharge and
conclusions. The case considered is at a helium pressure
of 300 mtorr, with peak plasma density of about
97x10"cm~> In this run the long step was
Aty,ng = 4T /13 for the first method, and 41, =6T,/10in
the matrix method, which ensure that 41, < T/5. The
first method gave approximately a factor of two increase in
speed. The matrix approach, which neglected high V' celis
in the transition matrix, is very machine dependent, but in
the case examined here it gives an increase of between 1.5
and 5. The results of using this longer step arc shown in
Figs. 3-7.

We now compare the results of the non-accelerated
scheme (with a damped field, referred to as the “basic”
scheme} to the reduced matrix approach. (The first
accelerated scheme gives similiar results to the matrix
approach within the error of the simulation.) It is interesting
to compare the discharge parameters predicted by the two
calculations described above. As can be seen, the densities
are only slightly altered, (Fig. 3), the bulk region being
somewhat narrower in the reduced matrix case. The electric
field and potential are changed very slightly, since the low
field bulk region has contracted, (Fig.4). The biggesi
difference is in the ionization rate § {Fig. 5), which has
dropped by about 25%. This in turn leads to a shight drop
in average electron energy 3k, T, (Fig. 6), since the product
of density N, and 3k, T, is expected to scale with ionization
rate S, according to a simple ambipolar diffusion model.

In summary, techniques have been discussed for speeding
up solutions of the Boltzmann equation. Exploiting the
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FIG. 5. Time-averaged ionization rates per unit volume, S
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FIG. 6. Time averaged mean electron energy, 3k, T.,.

ignorability of the perpendicular direction, in the variables
(Z,V,, Ve), was extensively examined (in addition to
damping the electric field). Different schemes were iden-
tified, offering reasonable accuracy, with speed increases
in the range 1.5 to 5. Similar techniques could also be
devised in systems with two or more spatial coordinates.
A truly implicit method was outlined for steady state
problems, employing a Newton’s method.

A detailed examination of the numerical formuiation

PARKER, HITCHON, AND LAWLER

employed here has been given elsewhere, emphasizing the
ways in which numerical errors should be handled [11].
The main sources of error were outlined here, It is shown in
[11] how they can be reduced so that they do not effect the
solution to the same problem treated here, involving an rf
discharge. Applications to an rf discharge were presented,
and the small differences between the accelerated and
“basic” results were discussed.
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